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Abstract Contextual factors greatly influence users’ musical preferences, so they are ben-
eficial remarkably to music recommendation and retrieval tasks. However, it still needs
to be studied how to obtain and utilize the contextual information. In this paper, we pro-
pose a context-aware music recommendation approach, which can recommend music pieces
appropriate for users’ contextual preferences for music. In analogy to matrix factorization
methods for collaborative filtering, the proposed approach does not require music pieces to
be represented by features ahead, but it can learn the representations from users’ historical
listening records. Specifically, the proposed approach first learns music pieces’ embeddings
(feature vectors in low-dimension continuous space) from music listening records and cor-
responding metadata. Then it infers and models users’ global and contextual preferences
for music from their listening records with the learned embeddings. Finally, it recommends
appropriate music pieces according to the target user’s preferences to satisfy her/his real-
time requirements. Experimental evaluations on a real-world dataset show that the proposed
approach outperforms baseline methods in terms of precision, recall, F1 score, and hitrate.
Especially, our approach has better performance on sparse datasets.
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1 Introduction

Nowadays, there is an enormous amount of musical contents available on the Internet. For
example, currently, Apple Music offers over 30 million songs.! Therefore, it becomes more
and more difficult for people to find the music pieces that they really enjoy, which is known
as the Paradox of Choice [25]. Therefore, recommender systems [19, 33, 38] have emerged
to reduce the search costs and offer only the relevant items from enormous amounts of
accessible data. Generally, traditional music recommender systems, such as collaborative
filtering, content-based and hybrid approaches, try to solve the recommendation problem
via the users’ long-term music preferences.

However, people usually have different preferences and requirements under different
contexts, and it has been proven that contextual information like physical surroundings,
emotional state, time, presence of other people can help recommender systems better under-
stand and satisfy the users’ real-time requirements [14, 32]. Especially, music pieces are
not neutral items but carriers of emotions and thoughts, and listening to music is a typ-
ical context-dependent behavior because people usually prefer different kinds of music
under different contexts [16]. For instance, people generally prefer energetic music pieces
with fast rhythm when doing exercises, and enjoy smoothing music pieces when resting.
According to the classification in [2], there are three types of contexts in recommender
systems: completely observable context, partially observable context, and unobservable
context. In general, contexts in music recommendation, which our work focuses on, are par-
tially observable or even unobservable. In addition, people can listen to music whenever and
wherever they want, which makes the context of listening to music changeable and dynamic.
Therefore, it becomes harder to acquire the real-time contexts of listening to music directly.

Fortunately, contexts of listening to music can be inferred from users’ interactions with
music systems. More specifically, contexts are reflected in the sequence of music pieces
liked or listened to by the user in her/his current interaction with the system, such as recent
playlists [13]. For example, in Pandora® (an online music streaming service website), users
create different playlists by choosing different track seeds or artists. Then, users can play
each of these playlists based on their current preferences which can be influenced by dif-
ferent contexts such as time, weather, emotion, or the task at hand. Given a set of music
which the user plays or likes during an interaction, the recommender system should be
able to recommend songs suitable for the current context of the user. Therefore, users’ his-
torical listening records indicate lots of information, such as the feature of music pieces,
users’ preferences for music, and a music recommender system should be able to infer the
user’s musical preferences from given music pieces liked or listened to by her/him and then
recommend appropriate music pieces to satisfy her/his real-time requirements.

In this paper, we present a context-aware music recommendation approach, which can
infer the user’s global and contextual preferences from her/his listening records and recom-
mend music pieces suitable for her/his current preferences for music. In detail, our approach
consists of three steps. Firstly, the proposed approach learn the latent low-dimensional
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representations (embeddings) of music pieces by considering music listening records and
corresponding metadata. Note that, the learned embeddings can effectively capture music
pieces’ intrinsic features, and the music pieces that have similar features yield similar
embeddings. Secondly, our approach infers and models the user’s global and contextual
preferences from her/his complete historical listening records and her/his active interaction
session (music sequence recently played by a user) using the learned embeddings. Finally,
music pieces, which conform to the user’s global and contextual preferences, are recom-
mended to satisfy her/his real-time requirements. Experimental evaluations show that the
proposed approach has better performance than baseline approaches. Moreover, the results
also show that our approach has a better ability to handle sparse data.

It is worthwhile to highlight the following contributions of the proposed recommendation
approach in this paper.

—  We propose a music embedding model to learn the real-valued, low-dimension embed-
dings of music pieces from music listening records and corresponding metadata.

—  We propose a context-aware music recommendation method, which is able to obtain the
users’ global and contextual preferences for music and recommend appropriate music
pieces to satisfy their real-time requirements.

— We conduct extensive experiments to evaluate the proposed method on real-world
dataset collected from an online music service website. The results show that our
method outperforms baseline methods, especially on sparse datasets.

The remainder of this paper is structured as follows. Section 2 describes the related
works. In Sections 3 and 4, we introduce the motivation and the proposed approach in
detail. Then, evaluations of the proposed approach are provided in Section 5. Finally, the
conclusion and future work are given in Section 6.

2 Related work

In this section, we describe the related works on context-aware music recommendation, as
well as works on embeddings which inspire our work.

2.1 Context-Aware music recommendation

Existing works on context-aware music recommendation can be divided into two categories
according to the context types: environment-related context based approaches and user-
related context based approaches.

2.1.1 Environment-related context based approaches

Such works are based on the fact that the environments have an influence on the users’ state
of mind or mood, and therefore influence the users’ musical preferences [24]. For instance,
people usually prefer different types of music in different seasons [27]. Consequently, music
recommendation approaches with environment-related parameters perform better than those
without considering contextual information. The environment-related contexts include time
[10], location [17], weather [26] and hybrid context [40]. Kaminskas and Ricci [17] explored
the possibilities of adapting music to the place of interests that the users are visiting. In
[10], the authors incorporated temporal information in session-based collaborative filtering
method to improve the performance of music recommendation. Park et al. [26] presented
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a context-aware music recommender, which utilized several kinds of context information,
including noise, light level, weather, and time. Hariri et al. [13] adopted an LDA model to
infer the topic probability distribution of songs with tags and discovered a pattern of topics
in the song sequences, which can be used as contexts to improve the performance of music
recommendation.

2.1.2 User-related context based approaches

Compared with the environment-related contexts, the user-related contexts are the states
of mind or moods of the users, and can therefore influence the users’ musical preferences
directly. The user-related contexts include activity [35], demographical information, emo-
tional state [6, 9, 12], and hybrid context [41, 42]. Han et al. [12] proposed a context-aware
music recommender system in which music is recommended according to the user’s cur-
rent emotion state and music’s influence on changes of the users’ emotion. Rho et al. [31]
extracted the emotional information from music, including rhythm, scale and harmonics,
and represented emotion as vector in the space of Thayer’s emotion model. Then they used
emotion vector as a supporting feature to compute music similarity. Deng et al. [9] pre-
sented another contextual music recommendation approach, which can infer users’ emotion
from her/his microblogs, and then recommend music pieces appropriate for users’ emotion.
Cai et al. [6] presented an approach named as MusicSense, which can infer users’ emotion
from Web documents read by the users and then match music to a document’s content in
terms of the emotions expressed by both the documents and the music. Yu et al. [41, 42]
proposed context-aware recommendation models which consider hybrid context informa-
tion (ranging from user preference and situation to device and network capability) as input
for recommendation. Especially, their models can effectively perform multimedia content
filtering, recommendation, and adaptation based on changing contexts.

2.2 Embedding

The proposed algorithm for learning the effective embedding of music pieces in this paper
can be seen as part of the literature on representations learning [4]. In traditional representa-
tion learning models, each symbolic data, such as word and item, is represented as a feature
vector using a one-hot representation. The object vectors have the same length as the whole
object sets, and the position of the observed object in the vector representation is set as one.
However, these models suffer from many problems, such as dimensional disaster and data
sparsity, which limit their practicability to a great extent.

Neural models have been proposed to solve these problems mentioned above. These new
models induce low dimensional embeddings of symbolic data by means of neural networks.
Specifically, embedding is a kind of feature learning technique, where symbolic data are
mapped from a space with one dimension per symbolic data object (one-hot representa-
tion) to a continuous vector space with much lower dimension based on training dataset,
and the learned low dimensional representation of the object is called its embedding. Note
that the learned embeddings can effectively capture items’ important relationships and fea-
tures in training dataset. Especially, in natural language processing (NLP) domain, neural
models have been widely adopted to learn the effective embeddings of words and sentences
[5]. Such models make use of the words ordered in sentences or documents, to explicitly
model the assumption that the closer words in the word sequences are statistically more
dependent. Although inefficient training of the neural network-based models has been an
obstacle to their wider applicability in practical tasks when the vocabulary size grows to
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several millions, this issue has been successfully addressed by recent advances in the field,
particularly with the development of highly scalable skip-gram (SG) and continuous bag-
of-words (CBOW) language models [22] for learning words’ embeddings. These powerful,
efficient models have shown very promising results in capturing both semantic and syn-
tactic relationships between words in large-scale text corpora, and obtained state-of-the-art
results on many NLP tasks. Recently, the concept of embedding has been expanded to many
applications, including sentences and paragraphs representation [11], summarization [21],
questions answering [43], recommender systems [34] and so on.

3 Motivation

Listening to music is a typical context-dependent behavior and the users usually prefer dif-
ferent types of music in different contexts. For example, a user may prefer sad music when
experiencing bad mood and enjoy energetic music when working out. Therefore, contexts
play an important role in predicting users’ preferences for music and recommending appro-
priate music pieces. However, users can listen to music whenever and wherever they want,
which makes it difficult to acquire the real-time contexts of listening to music directly. In
fact, the contexts may not be captured with a static set of factors, but rather, it is dynamic
and can be inferred from users’ interactions with the system. More specifically, the contexts
are reflected in the sequences of music pieces played or liked by the users in their cur-
rent interactions with the system [13], such as recent playlists, so it is feasible to infer the
contextual information from the users’ listening behaviors. Furthermore, users’ historical
listening records indicate lots of information, such as the features of music pieces and the
users’ preferences for music, and a music recommender system should be able to infer the
user’s contexts and musical preferences from the given music pieces liked or listened to by
her/him and recommend appropriate music pieces to satisfy her/his real-time requirements.

In detail, our work is based on the following three observations from the preliminary
analysis of the users’ listening data.

Observation 1:  every user has her/his own global musical preferences, which can be
inferred from their music listening records [7].

Every user has their own global musical preferences which are different from other
users’. The global musical preferences are related to many factors, including the user’
country, gender, age, personality, education, work, and so on. For example, teenagers
may prefer listening to popular or rock music rather than classic music. Moreover, the
users’ global musical preferences can be inferred from their historical listening records,
and then recommender systems can recommend appropriate music pieces.

Observation 2:  every user has different contextual musical preferences under different
contexts [18].

The users’ general musical preferences may be diverse and various. However, peo-
ple usually prefer only one or a few kinds of music pieces under certain contexts. For
example, a user who likes both light music and hard rock music usually prefers the for-
mer when at rest. Therefore, context-aware recommender approach can generate better
results by capturing and incorporating the users’ contextual preferences than traditional
approaches which do not consider contextual information. Although contextual pref-
erences play an important role in music recommendation, it is usually dynamic and
changeable, which makes it hard to acquire the real-time contexts directly.
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Observation 3:  every user’s contextual musical preferences usually maintain stable
within a period (usually one kind of taste), which are reflected in their recent listening
records [13].

As mentioned above, every user’s contextual preferences are usually certain and will
maintain for a while. For example, a user may keep listening to sad music when experiencing
bad mood, and this situation usually lasts for a period of time. Besides, most users are
usually engaged in other things (also one kind of context) while listening to music, and
they tend to listen to a list of music pieces with similar styles which conforms to their
contexts. Therefore, it is feasible to infer the user’s contextual preferences from music pieces
in her/his active interaction session (music pieces recently listened to by her/him). On the
other hand, users do not want to interrupt what they are engaged in to reselect music, which
makes the precise prediction of users’ contextual preferences more important.

Based on the three observations mentioned above, we need a model that is capable of (1)
learning the embeddings of music pieces from music listening sequences, (2) inferring and
modelling users’ general and contextual musical preferences from her/his listening records,
and (3) incorporating them into music recommendation.

4 Proposed approach
In this section, we introduce the task formalization of the proposed context-aware music rec-
ommendation approach, and then describe the proposed approach in detail, which consists

of two components: music embedding model and context-aware music recommendation.
Table 1 gives the basic symbols used in this paper.

Table 1 Basic symbols used in this paper

Symbol Description

U user set

u a user

M music set

m a piece of music

H all users’ historical listening sequences

H" user u’s historical listening sequence

mf the i-th music piece in user #’s listening sequence H"
A the embedding of music piece m!

pg user u’s general music preference

py user u’s contextual music preference

p(milu, pg, p? the predicted preference of u to music piece m;
>, pl.pl the ranking of candidate music pieces
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4.1 Formalization

Let U = {u1, ua, ..., ujy|} be aset of users and M = {my, my, ..., mm|} be a set
of music pieces, where |U| and |M| denote the total number of unique users and music
pieces, respectively. For each user u € U, her/his historical listening sequence is a list of
music records (music pieces and playing timestamps), which is formally defined as H" =
{m{, my, .., m"‘Hul}, where m{ € M and |H"| is the length of u’s listening sequence.
Music pieces in each listening sequence are sorted according to the corresponding playing
timestamps. Therefore, the task becomes to recommend music that user # would probably
enjoy now given her/his historical listening sequence H".

There are two challenges here: (1) how to infer and model the users’ global and contex-
tual preferences for music from their historical listening sequences; (2) how to incorporate
these preferences into music recommendation to satisfy the users’ current requirements.
To address these challenges, we first propose a music embedding model for learning the
embeddings (feature vectors in low dimensional continuous space) of each music piece and
each user. Then we propose a context-aware music recommendation approach, which can
infer the user’ global and contextual preferences for music, and take the preferences into
consideration to generate appropriate recommendation.

4.2 Learning music embedding

Music Embedding Model (MEM) The Music Embedding Model (MEM) is proposed
to learn the D-dimension real-valued embeddings (feature vectors) v € RP of each music
piece m from all users’ historical listening sequences H = {H"!, H"2, ..., H"IUl}, where
H" ={mY, mj, ..., mT‘H,,l} is user u’s historical listening sequence.

The MEM is based on the three observations in Section 3. Firstly, each user usually
has specific general musical preference (Observation 1), so the embeddings of the music
pieces that are listened to by the same user should be similar to each other. Secondly, each
user also has specific contextual musical preference usually maintains stable within a period
(Observation 2 and 3), so the embeddings of the music pieces that are listened to by the
same user within a period should be more similar to each other.

The graphical representation of MEM is shown in Figure 1. In this model, a sliding
window is employed on the historical listening sequence of each user to generate the training
data, where 2¢+1 is the length of the sliding window for listening sequences. Larger ¢ results

embedding of m{

-{I11T]
m
-{I111]

my

(D

OLrj - LI oI - LI
x % % %

m x
pr H H H H i
m>| [T1T1 ©OG:--Ce0 @00::-000 O@O::-000) OCO0---00@ OOO---@00
" u: ., i, i, m, ™
N ) N J \ J
global context local context metadata

Figure 1 The framework of MEM
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in more training examples, which leads to higher accuracy at the expense of more training
time. Specifically, all music pieces before and after m; in the sliding windows have strong
relations to music piece m;. In order to fully utilize these relations in the training dataset,
MEM uses local context music pieces {m;__. : mj, .} in each sliding window to predict the
central music piece m; . Except for the local context, we also incorporate the global context
music pieces u : H" into our model. Therefore, the aim becomes predicting the central
music piece m} accordmg to its local context music pieces {m}__ : m .} and global context
music pieces u : H". The corresponding probability function is defined as follows:

Pr(m{|m}_, :m{ . u)= exp( )/Z exp -V ) (1)

meM

where V', u is the output embeddlng of the central music piece m;, and v is the average
input embeddmg of u : H" and {m;__ : m{,__}, which are the global and local context music
pieces of m} in u’s historical hstemng sequence H", respectively. Formally, v is defined as

follows:
V=Mut D) ey / 2c+1) 2)

—c<j<c,j#0

where v, is the average input embedding of all global context music pieces in u’s historical
listening sequence H". Specifically, v, is defined as

> v [ |H"] 3)

I<i<|H"|

where | H"| is the length of u’s historical listening sequence H".
Then, the log-likelihood objective functions over the entire training data is defined as
follows:

J = Z Z logPr (m?lm?_c 1m?+c’“) “)

ueU,H"eH \m{eH"

Generally, music pieces are more similar with each other if they have similar metadata,
including album and singer/player information. For example, if two music pieces are in
the same album or sung/played by the same musician, they are very likely to have similar
styles and genres. Therefore, the embeddings of music pieces that belong to the same album
or sung/played by the same musician should be close to each other. Let s(myg, m;) be the
similarity score between music pieces my and m;. Under the above assumption, we use the
following heuristics to constrain the similarity score:

1.0 if a (mg) = a (m;) and p (my) = p (m;)
0.5 ifa(my) = a(m) and p (my) # p (m;)
0.5 ifa (my) # a(my) and p (my) = p (m;)
0 otherwise

&)

s (mg,mp) =

where a(my) and p(my) denote the album and the musician of music piece my, respectively.
If music piece my share the same musician and the same album with music piece m;, their
similarity score is 1.0. If music piece my only shares the same musician or the same album
with music piece m;, their similarity score becomes 0.5. Otherwise, their similarity score is
0. Note that the similarity parameters in s(my, m;) are set based on our experience, and if
they are optimized on the dataset, the final performance can be further improved.
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Then we encode the metadata, including album and musician information, using a
regularization function R as follows:

R= Z Z s (my, my) - exp (V,Z;k -vm,) (6)

mreM meM

where the similarity score s (myg, m;) serves as a weighting function.
Therefore, we get the final objective function of MEM, which incorporates metadata
information into the music embedding learning process, as follows:

Juem = J + BR @)

where § is the combination coefficient. Our goal is to maximize the combined objective
function Jys gy over the entire training data.

Learning In the learning phase, we need to maximize the objective functions of the log
probability defined in (7) over all users’ historical listening sequences. However, the com-
plexity of computing the corresponding soft-max function defined in (1) is proportional to
the total music set size |M|. As | M| can easily reach several millions, it is difficult to directly
compute the probability. Two approaches of computationally efficient approximation of the
full soft-max functions are hierarchical soft-max [23] and negative sampling [22]. In this
paper, we adopt negative sampling to compute the objective function, which approximates
the original soft-max function defined in (1) with the following formula:
Pr(m{|m{_, :m{ . u) = logo (VT . v’)

m}
k- By [logo (<vh, V)] ®)

where o (x) = 1/(1 4+ e™%), k is the number of negative samples, and m;: is the sampled
music piece, drawn according to the noise distribution Py, which is modeled by empiri-
cal unigram distribution over items. Negative sampling method generates k noise samples
for prediction, in which £ is a very small number compared with |M|. Therefore, the train-
ing time yields linear scale to the number of noise samples and becomes independent
of the music set size |M|. Then stochastic gradient descent algorithm is used to maxi-
mize the optimized objective function represented by (8). Specifically, each embedding is
firstly initialized to a D-dimension random vector, and the corresponding embeddings will
be updated in the process of maximizing the objective functions with stochastic gradient
descent algorithm. Finally, the embeddings of all users and music pieces are learned, and
similar music pieces (or similar users) lie nearby in the D-dimension real-valued continuous
space.

4.3 Context-aware music recommendation

Based on those learned embeddings, we can infer and model the users’ global and contextual
preferences from their music listening sequences.

Specifically, the user u’s global preferences are reflected in ©’s music listening histories
(Observation 1 in Section 3), which can be obtained by averaging the embeddings of music
pieces in her/his historical listening sequence H*, which is formally defined as:

pi= Y vu [ |H ©)

1<i<|H"|
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Besides, according to Observation 2 and Observation 3 in Section 3, u#’s contextual music
preferences are reflected in u’s recent music listening records, which can be obtained by
averaging the embeddings of music pieces in her/his recent music listening sequence (music
pieces in her/his active interaction session), which is defined as

Pi= Y vV [ IRS| (10)

m‘jfeRSu

where RS, is u’s recent listening sequence of music in her/his current interaction with the
system, and Vint is the embedding of music piece m? in RS,.

Finally, a context-aware music recommendation approach is proposed to recommend
appropriate music according to users’ global and contextual music preferences. Formally,
given a user u and her/his global and contextual music preferences p, and pg, the predicted
preference of u for music piece m; is defined as

p (mi 10 ) = cos (V. BL) + <05 (Vi BY) an

where vy, is the learned embedding of music piece m; and cos (v, p) is the cosine similarity
[3] of vectors v and p.
Finally, the ranking of music pieces > 0, pt.pt in our approach is defined as

>y pi i 16> P (milpZn PZ) >p (mf'|PZ,, PZ) (12)

We then recommend the music pieces with high ranking scores to the target user.

5 Evaluation

In this section, we experimentally evaluate the performance of the proposed context-aware
music recommendation method. In detail, we first describe the dataset, the baseline meth-
ods, and the experimental designs. Then we illustrate the embedding learned by music
embedding model (MEM) with three examples. Next, we investigate how the dimension
of the embeddings affect the performance of the proposed approach. This is followed by
a subsection about the comparison between our method and baseline methods. Finally, we
study how the proposed method and baseline methods perform on datasets with different
sparsities.

All experiments are performed on an Intel Core 17-4700 base PC, which has 8§GB RAM
and runs a 64-bit Windows 10 operating system.

Table 2 Complete statistics of the dataset

#Users #Music Pieces #Listening #Listening per user #Listening per music

4,284 361,861 4,284,000 1,000 11.8
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Figure 2 Popularity analysis of the dataset

5.1 Dataset

The dataset is collected from an online music service website named Xiami Music®. As
shown in Table 2, the dataset* contains 4,284,000 music listening records of 4,284 users.
Besides, every user has 1000 listening records and each music piece is interacted 11 times
on average.

In addition, Figure 2 illustrates the relationship between popularity (listening count) and
the number of music pieces with corresponding popularity. We can see that, only a small
number of music pieces are very popular, while the majority of music are not so popular,
which basically conforms to the power law distribution [1].

5.2 Baseline methods

In last two decades, many algorithms have been proposed for top-n recommendation on
binary data without rating. Five state-of-the-art recommendation approaches, including
Temporal Recommendation based on Injected Preferences Fusion (IPF) [39], Factorizing
Personalized Markov Chains (FPMC) [29], Bayesian Personalized Ranking (BPR) [28],

3http://www.xiami.com

4Dataset link: https:/zjueducn-my.sharepoint.com/personal/tokyol _zju_edu_cn/_layouts/1 5/guestaccess.
aspx ?folderid=004419f09ac95493884d1f7314b89af43 &authkey=AW 11UCePa24 WA76yMxBJ4GM
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FISMauc (FISM) [15] and user-based collaborative filtering method (UserKNN) [30] are
used as baseline methods.

— Temporal Recommendation based on Injected Preferences Fusion (IPF): IPF [39]
is a novel context-aware approach that adopts Session-based Temporal Graph (STG)
and personalized random walk algorithm to perform temporal-aware recommendation.
Specifically, STG is a bi-partite graph which can efficiently capture and model the
users’ long-term and short-term preferences over time.

— Factorizing Personalized Markov Chains (FPMC): FPMC [29] is a recommendation
method based on personalized Markov chains over sequential (contextual) set data.
Instead of using the same transition matrix for all users, this method uses an individual
transition matrix for each user which in total results in a transition cube.

— Bayesian Personalized Ranking (BPR): BPR [28] is a recommendation method based
on a generic optimization criterion BPR-Opt for personalized ranking that is the max-
imum posterior estimator derived from a Bayesian analysis of the recommendation
problem, and a corresponding generic learning algorithm named LearnBPR that is
based on stochastic gradient descent with bootstrap sampling.

— FISMauc (FISM): FISM [15] is an item-based recommendation method for generating
top-n recommendations that learns the item-item similarity matrix as the product of two
low dimensional latent factor matrices. Specifically, these matrices are learned using a
structural equation modeling approach, wherein the value being estimated is not used
for its own estimation.

— User-based collaborative filtering method (UserKNN): UserKNN [30] is a classical
collaborative filtering recommendation method.

5.3 Experimental designs

In this section, we introduce the detailed experimental designs, including dataset partition,
evaluation metrics as well as settings of parameters.

5.3.1 Dataset partition

As mentioned in Section 4.1, the historical listening sequence of each user u € U in
the collected dataset is a list of music records sorted according to their playing times-

tamps, which is formally defined as H" = {m{, m}, .., m‘”H,,l}, where m{ € M and
i € [1, |H"|]. In addition, each user’s historical listening sequence H" can be aggre-
gated into sessions §* = {S{, S5, ..., S|usu\}’ where music pieces with close playing

timestamps are grouped into the same session. Formally, u’s n-th session is defined as

St = {m,”l,l, mz,z, s m:’| |}, where mz,i € Mandi € [1, S,’f’] For example, as

Si
shown in Table 3, u’s listening sequence contains 9 pieces of music and the corresponding
timestamps. Obviously, the first four pieces can be aggregated into the same session because
their playing timestamps are close to each other. Similarly, the other five pieces of music
are aggregated into another session. More formally, the session set of u is $* = { 1S },
where S} = {m’f, my, mj, mZ} and S¥ = {mg, mg, my, mg, mg}

The goal of this experiment is to evaluate the performance of different recommendation
approaches in making good recommendation given the users’ historical listening sequences.
Therefore, we can split the whole dataset into training sets and test sets according to the idea
of 10-fold cross-validation. In each validation, we keep the complete listening records of
90% users and the first half of each session in the remaining 10% users’ historical listening
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Table 3 Listening sequence of u

No. Music name - Artist Playing time H" S
1 Hero - Mariah Carey 2015-09-23 19:55 mf St
2 My Love (Live) - Celine Dion 2015-09-23 19:59 my St
3 My Heart Will Go On - Celine Dion 2015-09-23 20:07 mj A\
4 Living For Love C Madonna 2015-09-23 20:12 my A\
5 Stairway to Heaven - Led Zeppelin 2015-09-24 10:35 msg Sy
6 Knockin’ on Heaven’s Door - Guns N” Roses 2015-09-24 10:43 mg Sy
7 Enter Sandman - Metallica 2015-09-24 10:49 my Sy
8 Nothing Else Matters - Metallica 2015-09-24 10:54 mg Sy
9 Master of Puppets - Metallica 2015-09-24 11:01 mg Sy

sequences as the training set, and use the following half of each session (test session) for
the remaining 10% users as the test set.

5.3.2 Evaluation metrics

The performance is evaluated for each test session 7 in the test set. For each recommenda-
tion, we generate a list of n music pieces, denoted by R. The following four metrics [3, 8]
are used to evaluate the performance of all recommendation approaches.

1. Precision
Precision (also called positive predictive value) is the fraction of recommended
music pieces that the target user actually listened to. Its definition is given below:

Precision = Z IR N T;| /IR

1<i<#(recs)

where:

—  #(recs) is the total number of recommendations.

—  R; is the recommended music list of the i-th recommendation.

— T; is the music list of the i-th recommendation in the test data, which is actually
listened to by the users.

2. Recall
Recall (also known as sensitivity) is the fraction of interested music of the target user
that are recommended, and its definition is given as:

Recall = Z IR N Ti| /IT;]

1<i<#(recs)

where:

—  #(recs) is the total number of recommendation.

— R, is the recommended music list of the i-th recommendation.

— T; is the music list of the i-th recommendation in the test data, which is actually
listened to by the users.
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Table 4 Parameter settings for training MEM

Parameter Value Description

B 0.01 The weight of metadata in MEM

Dimension [50, 300] The dimension of the learned embeddings
Window (2¢ + 1) 5 The number of the music pieces in the context
Negative sample 20 The number of “noise items”

should be drawn (in order to
increase the efficiency of the train-
ing progress)

Down sample le-5 Higher frequency items are randomly down sampled
Min-count 1 Items that appear less than the min-count value are ignored
Iteration 10 The count of training iteration
3. F1 Score
F1 score is the harmonic mean of precision and recall. It is formally defined as
follows:

F1 score =2 x Precision x Recall /(Precision + Recall)

4. Hitrate
Hitrate is the fraction of hits, and a hit means the recommendation list contains at
least one music pieces that the user actually listened to. For example, as for a line (u, m)
in the test data, if the recommended list of # contains m, then it is a hit. The definition
is given below:
HitRate = #(hits) [#(recs)

where:

—  #(hits) is the total number of hits.
—  #(recs) is the total number of recommendation.

5.3.3 Parameter settings

The detailed configurations of the parameters in MEM and the corresponding descriptions
are given in Table 4 as follows.

Specifically, the combination weight 8 used in MEM plays an important role in produc-
ing high quality music embedding. Overemphasizing the weight of the original objective
may result in weakening influence of metadata, while putting too large weight on metadata
may hurt the generality of the learned music embeddings. According to the experiments in
Table 5, we set § = 0.01. Besides, the window size (2¢ + 1) also play an important role

Table S Parameter ’s impact

on F1 Score and Hitrate B F1 Score@5 Hitrate @5
0 5.21% 27.83%
0.001 8.76% 47.39%
0.005 9.54% 48.94%
0.01 9.99 % 50.60 %
0.05 8.72% 44.69%
0.1 7.13% 36.15%
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Table 6 Parameter ¢’s impact on

F1 Score and Hitrate c F1 Score@5 Hitrate @5
1 7.54% 41.94%
2 9.99% 50.60%
3 10.12% 51.09%
4 10.24% 51.36%
5 10.31% 51.48%

in producing high quality music embedding. As shown in Table 6, larger c¢ results in more
training examples, which leads to higher accuracy at the expense of more training time.
Finally, we set the window size ¢ = 2(2c + 1 =5).

Moreover, the dimension varies from 50 to 300, and we will explore the optimal value
by preliminary experiments in Section 5.5.

5.4 Illustration of MEM’s effect

In order to show what the learned embeddings look like, some illustrations of the learned
embeddings are given before the evaluations of our approach.

5.4.1 Ilustrations of artists’ embeddings

We firstly analyze the embeddings of some selected artists’ music pieces with t-SNE [20],
which can visualize high dimensional data. More specifically, Table 7 shows several well-
known artists and their tag information which are collected from last.fm>, and Figure 3
shows the 2-dimensional single-point embeddings of top 10 music pieces of each artist with
t-SNE. From the results, we can draw several conclusions.

Firstly, it is interesting to observe that music pieces by the same artist cluster tightly.
The reason is two-fold. On the one hand, each singer’s specific styles are reflected in the
users’ music listening sequences as well as the metadata of music pieces, which conforms
to the three observations mentioned in Section 3. On the other hand, our music embedding
model can effectively learn the accurate embeddings of music pieces from music listening
sequences and the metadata of music pieces.

Secondly, the music pieces that are sung/played by the artists of similar genres lie nearby
in the 2-dimension space. For example, Gun N’ Rose, Bon Jovi, and Bob Dylan (1, 3, and
4) are three famous rock singers from Europe or the United States, and the embeddings of
their music pieces are close to each other in the 2-dimension space. Besides, both Maroon
5 and Robbie Williams (2 and 5) have styles of alternative rock and pop, so the embeddings
of their music pieces lie between the embedding of classic pop music and the embedding of
rock music. Moreover, Lady Gaga, Adele, and Mariah Carey (7, 8, and 9) are three famous
female vocalists of pop styles, and the embeddings of their music pieces are also close to
each other in the 2-dimension space.

Thirdly, some slight differences in styles are also reflected in the learned embeddings,
which further demonstrates the effectiveness of the MEM. For example, both Joe Hisaishi
and Yuki Kajiura (10 and 11) are Japanese instrumental soundtrack masters, and their
pieces’ embeddings are closer to each other than the embeddings of other artists’ pieces

Shttp://www.last.fm
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Table 7 Basic information of some famous artists

No. Artist Tags in last.fm

1 Guns N’ Roses rock, hard rock, classic rock, metal,80s

2 Maroon 5 pop, rock, pop rock, alternative, alternative rock
3 Bon Jovi rock, hard rock, classic rock, hair metal, 80s

4 Bob Dylan folk, rock, folk rock, classic rock, songwriter, 60s
5 Robbie Williams pop, British, britpop, rock, alternative rock

6 Justin Bieber pop, black metal, rnb, hip-hop, r&b

7 Lady Gaga pop, dance, electronic, epic, female vocalists

8 Adele pop, soul, British, songwriter, female vocalists

9 Mariah Carey pop, b, soul, female vocalists, 90s

10 Joe Hisaishi sound track, Japanese, instrumental, anime, classical, piano
11 Yuki Kajiura sound track, Japanese, instrumental, anime, j-pop

in the 2-dimension space. However, Hisaishi’s soundtracks are piano pieces with classi-
cal styles while Yuki Kajiura’s soundtracks are j-pop styles, so there exists a little distance
between the embeddings of their pieces in the 2-dimension space.

n
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Figure 3 Visual representation of embedding of songs from selected artists in 2-dimension
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Figure 4 Similarity visualization of music examples with the embedding

5.4.2 Ilustrations of selected music pieces’ embeddings

While the visualization in Figure 3 provides interesting qualitative insights about artists,
we now provide a further quantitative display of some selected music pieces with differ-
ent styles. Figure 4 shows the visualization of similarity among music examples given in

Table 8 Basic information of selected music pieces

No. Song - Artist Tags

1 Drowning - Backstreet Boys pop, ballad, boy bands

2 As Long as You Love Me - Backstreet Boys pop, boybands, 90s

3 Swear It Again C Westlife pop, Irish, 90s

4 My Love C Westlife pop, boy bands, Irish

5 Don’t Cry - Guns N’ Roses classic rock, hard rock, ballad

6 Knockin’ on Heaven’s Door - Guns N’ Roses  rock, classic rock, hard rock

7 Fade to Black - Metallica rock, thrash metal, heavy metal

8 Fall Again - Kenny G smooth jazz, R&B, Soul

9 Heart and Soul - Kenny G smooth jazz, Rhythm and blues

10 IBelieve - Dave Koz jazz, smooth jazz, saxophone

11 The Look of Love - Diana Krall jazz, smooth jazz, vocal jazz, female vocalists

12 Don’t Know Why - Norah Jones jazz, blues, female vocalists

13 Summer - Joe Hisaishi sound track, Japanese, anime, instrumental, classical
14 Moonlit Sea of Clouds - Joe Hisaishi Sound track, anime, classical, instrumental, Japanese
15 Canta Per Me - Yuki Kajiura sound track, anime, Japanese

16 zero hour - Yuki Kajiura sound track, anime, Japanese
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Table 9 5-dimension embeddings of selected music pieces

No. Song - Artist Embedding

1 Drowning - Backstreet Boys (—0.291412, 0.270251, —0.639598, 0.32234, —0.13059)
2 AsLong as You Love Me - Backstreet Boys (—0.478884, 0.592784, —0.63983, 0.200698, —0.139833)
3 Swear It Again C Westlife (—0.218441, 0.429761, —0.578103, 0.149284, —0.016236)
4 My Love C Westlife (—0.568655, 0.775186, —0.400681, 0.001539, —0.34142)
5 Don’t Cry - Guns N’ Roses (0.033134, 0.41475, —0.667938, —4.06E-4, —0.386768)
6 Knockin’ on Heaven’s Door - Guns N’ Roses (—0.130283, 0.361255, —0.62779, —0.03417, —0.426643)
7  Fade to Black - Metallica (0.366062, 0.245874, —0.60944, 0.015976, —0.373623)

8  Fall Again - Kenny G (—0.100747, 0.780737, —1.538182, 0.71393, —0.50115)
9  Heart and Soul - Kenny G (—0.011782, 0.836092, —1.271244, 0.665455, —0.249353)
10 IBelieve - Dave Koz (0.398667, 0.477762, —0.662803, 0.714214, —0.25805)
11 The Look of Love - Diana Krall (—0.179568, 0.095475, —1.014773, 0.036958, —0.375554)
12 Don’t Know Why - Norah Jones (—0.032461, 0.516513, —0.719967, 0.110694, —0.531966)
13 Summer - Joe Hisaishi (0.242241, 0.724721, —0.471825, 0.516915, 0.133137)

14 Moonlit Sea of Clouds - Joe Hisaishi (0.180384, 0.571349, —0.13619, 0.702893, 0.577625)

15 Canta Per Me - Yuki Kajiura (—0.151482, 0.138815, —0.217584, 0.820246, 0.201598)
16 zero hour - Yuki Kajiura (—0.024295, 0.654515, 0.127545, 1.551609, 0.222309)

Table 8. Besides, Table 9 gives the 5-dimension real-valued embeddings of the selected
music pieces in Table 8. From the results, we can draw three conclusions.

Firstly, music pieces with similar styles and genres have similar embeddings. For exam-
ple, the embeddings of the last four anime soundtrack music pieces (13-16) composed by
Japanese artists in Table 8 are indeed similar to each other than the other music pieces.

Secondly, the embeddings of music pieces sung/played by the same artists are usually
closer to each other than the embeddings of other pieces. For example, none of these four
music pieces (13-16) are similar with the other music pieces (1-12) in Table 8.

Thirdly, some slight differences in styles and genres of music pieces are also shown by
the learned embeddings, which shows that the learned embeddings by MEM can effectively
capture the accurate features of the corresponding music pieces. For example, as for the
last four music pieces (13-16), all of which are soundtracks for anime, and they are more
similar to each other than the other pieces (1-12) in Table 8. In addition, the former two
pieces (13-14) are more similar to each other than the latter two pieces (15-16) in Table 8.
The reason is that Hisaishi’s soundtracks are instrumental pieces with classical styles while
Yuki Kajiura’s soundtracks are not.

5.4.3 Illustrations of the embeddings of users’ listening records

While the visualization in Figure 4 provides interesting qualitative insights about artists, we
now provide a further quantitative display of some selected users. Figure 5 gives the visu-
alization of the embeddings of different users’ listening records. From the results, we can
draw two conclusions. Firstly, the music pieces listened to by each user form one or sev-
eral clusters, which shows that users have different general preferences for music, and they
usually enjoy one or several specific kinds of music (Observation 1). For example, userl
has relatively focused preferences while user3 has a broader range of interests. Secondly,
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Figure 5 Visualization of the embeddings of different users’ listening records

the music pieces in each session cluster tightly, which shows that each user has different
contextual preferences for music under different contexts (Observation 2-3).

In conclusion, the illustrations confirm our observations mentioned in Section 3 and
show that the recommending strategy of incorporating both user’s global and contextual
preferences is reasonable and sound. On the other hand, the illustration also shows that
the embeddings learned by our method from music listening sequences depict the intrinsic
features of music pieces effectively and are useful for many other tasks, such as similarity
measure, corpus visualization, automatic tagging, and classification.

5.5 The impact of dimension

The dimension of the embeddings is very important in music recommendation, and it is
necessary to choose a proper dimension to balance the performance of accuracy and effi-
ciency. Specifically, the embeddings of higher dimension can capture more useful features
and depict music pieces better. On the other hand, the learning process needs more com-
putation resources, and our recommendation task does not need embeddings of too high
dimension. In order to investigate how the embedding’s dimension affect the performance
of the proposed approach, we evaluate our method with different dimensions (50, 100, 150,
200, 250 and 300), and the results are shown in Figure 6.
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Figure 6 Experimental results of the dimension’s impact

We have the following two observations from the experimental results. Firstly, as the
dimension increases, the proposed method achieves better performance in terms of preci-
sion, recall, F1 score, and hitrate. The reason is that embedding with larger dimension can
indeed capture more useful features and depict users and music pieces better. Secondly, the
performance tends to be stable when the dimension gets very high. Besides, as shown in
Table 10, the approach with high dimension needs more computation cost, which will result
in efficiency problem. Finally, we set the dimension of embedding as 200 based on our
experiments.

Table 10 The impact of

dimension on efficiency Dimension Training Time(s) Testing Time(s)
50 3016.285 391.332
100 3445.858 502.099
150 4228.754 573.51
200 4802.975 705.437
250 5129.111 791.369
300 5604.439 904.171
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5.6 Comparison with baselines

We further compare our methods with five state-of-the-art baseline methods, including
Bayesian Personalized Ranking (BPR), FISMauc (FISM), Temporal Recommendation
based on Injected Preferences Fusion (IPF), Factorizing Personalized Markov Chains
(FPMC), and user-based collaborative filtering method (UserKNN). The results are shown
in Figure 7.

We have the following observations from the experimental results. (1) Our method has
the best performance. Take the F1 score as an example. When compared with BPR, FISM,
IPE, FPMC, and UserKNN with the recommending number n=20, the relative performance
improvements by MEM are around 96.4%, 69.7%, 42.6%, 31.5%, and 124.1%, respectively.
The improvements show that our approach is more effective in contextual preferences infer-
ring and context-aware music recommendation. Besides, it can also be indicated that the
users’ contextual preferences play an important role in predicting their musical interests and
recommending appropriate music. Especially, the proposed approach is better than FPMC
because our approach can capture more co-occurrence information instead of only adja-
cent relation in the sequences, and fully exploit listening sequences, user-music interaction
matrix, and metadata.(2) IPF performs better than BPR, FISM, and UserKNN, but is not as
good as our method.The reason is that our methods can fully utilize playing sequences and
metadata as well as incorporate contextual information in a more effective way. Besides,
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Figure 7 Experimental results of the comparison with baselines
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the high sparsity of this dataset (99.72%) may result in the bad performance of the baseline
methods. Therefore, we further compare the proposed approach and other baseline methods
on datasets with different sparsities in the next subsection. (3) The hitrate and recall for all
the three strategies increase but the precision decreases when n gets larger. These results are
in accordance with the intuitive and common sense. It requires system developer to select
the proper n in order to balance the performances of hitrate/recall and precision.

In conclusion, users’ contextual preferences can indeed improve the performance of
users’ musical interests prediction and music recommendation. It also proves that our
method can effectively learn music pieces’ embeddings as well as incorporate both the
user’s global preferences and contextual preferences into music recommendation to satisfy
the user’s real-time requirements.

5.7 The impact of data sparsity

In order to investigate the proposed method’s ability of handling sparse data, we further
evaluate our method and the baseline methods on datasets with different sparsities. In this
work, the data sparsity means how sparse the user-music interaction data is. Specifically,
the datasets with different sparsities are generated by removing music pieces that have been
played less than k,, times, where k,, are set to {0,5,10,15,20}. The results are shown in
Figure 8.
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Figure 8 Top 5 Performance over datasets with different sparsities
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From the results, we have the following conclusions. (1) Our method has better perfor-
mance than baseline methods over all datasets with different sparsities. Take the F1 score as
an example. When compared with BPR, FISM, IPF, FPMC, and UserKNN with the spar-
sity set as 97.94%, the relative performance improvements by MEM are around 70.9%,
58.0%, 15.1%, 40.22%, and 174.4%, respectively. This result proves our method can infer,
model, and incorporate users’ global and contextual musical preferences in a more effective
way. Besides, it also verifies the importance of users’ global and contextual preferences,
especially the latter, in the task of music recommendation. (2) With the sparsity increas-
ing, the performance of all methods, especially BPR and FISM, show obvious trend of
decrease. However, the performance gaps between baseline methods and MEM also get
larger. Again, take the F1 score as an example. When compared with BPR, FISM, IPF,
FPMC, and UserKNN with the sparsity being 99.72%, the relative performance improve-
ments by MEM are around 143.2%, 121.5%, 65.2%, 51.4%, and 184.8%, respectively. This
is because MEM depends on both listening sequences and user-item matrix as well as meta-
data to perform recommendation, and it is less sensitive to the sparsity of user-item dataset.
In brief, our method can handle sparse data better than baseline methods.

6 Conclusion and future works

This paper presents a novel approach for context-aware music recommendation, which
can learn the embeddings of music pieces, obtain the users’ global and contextual pref-
erences for music, and recommend appropriate music pieces that are in accordance with
the users’ preferences. Specifically, the proposed approach consists of three steps. Firstly,
it learns music pieces’ embeddings (feature vectors in low-dimension continuous space)
from music listening records and corresponding metadata. Then it infers and models users’
global and contextual preferences for music from their listening records with the learned
embeddings. Finally, it recommends appropriate music pieces according to the target user’s
preferences to satisfy her/his real-time requirements. Experimental evaluations on a real-
world dataset show that the proposed approach outperforms baseline methods, especially
on sparse datasets.

Our work differs from prior works in two aspects: (1) the proposed approach depends
on listening sequences, metadata, and user-item matrix to perform recommendation, and it
is less sensitive to the sparsity of user-item dataset; (2) the proposed approach incorporates
both users’ global and contextual musical preferences into recommendation, which makes
it perform better than baseline methods.

Based on our current work, there are three possible future directions. First, we are going
to connect microblog service (such as Twitter) with music service websites (Such as Xiami,
Last.fm) to incorporate social relationships into music recommendation [36], and adopt
more advanced techniques [37] to further improve the performance. Secondly, this work
focuses on music recommendation for individual users, and we will explore the possibility
to apply our approach in music recommendation for group users, such as families or parties.
Finally, we only evaluate our approach by offline experiments in this work, and we will
explore if the users’ satisfaction increases when the users listen to the recommended music
by online experiments.
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